So you Think You Have A Geothermal Resource!! –Now What?

Presentation for

Geothermal Investor's Forum

Paul Brophy EGS Inc Oct 2007

Geothermal Systems Characteristics

- A heat source (magmatic or non-magmatic)
- Convective upflow
- Recharge by meteoric waters
- Deep mixing with meteoric waters and/or condensate
- Outflow of the deep fluids to the surface or other hydraulic base level

Almost all geothermal systems require the presence of fractures to allow movement of fluids from depth into the shallow surface

Resource Settings

- Type A Magma-heated, dry steam resources (The Geysers)
- Type B Andesitic volcanic resources (Philippines, Indonesia, Central & South America)
- Type C Caldera resources (Medicine Lake, Valles Caldera, Los Humeros, Yellowstone)
- Type D Sedimentary-hosted, volcanic-related resources (Imperial Valley)
- Type E Extensional tectonic, fault-controlled resources (Great Basin)
- Type F Oceanic-ridge, basaltic resources (Hawaii, Iceland, Azores)

Conceptual Model of an Andesitic Volcano

(Henley and Ellis, 1985)

Worldwide Geothermal Resource Types

- dry steam
- **■** andesitic volcanic
- □ caldera
- □ sedimentary volcanic
- extensional nonmagmatic
- oceanic

U.S. Proportion of World Geothermal Reources

Temperatures at 3 km Depth

EXPLORATION APPROACH

- Remote Sensing Data (REGIONAL)
- Geologic/Structural and Surface Manifestations
 Mapping (REGIONAL/EXTENDED PROJECT AREA)
- Geochemical Sampling and Analysis (EXTENDED PROJECT AREA/PROJECT)
- Geophysical Surveys (PROJECT)
- Exploration Drilling (PROJECT)

Temperature Gradient/Heat Flow

Exploration (Core) Wells

6. Production Well Drilling (PROJECT)

Remote Sensing Data Types

- Multispectral (several relatively broad bands)
- Hyperspectral (many narrow bands)
- Thermal Infrared (TIR can be multispectral)
- Panchromatic (gray scale single very broad band)
- Radar (microwave)
- LIDAR (Light Detection and Ranging laser)
- High/Low Altitude Photography

Geology /Structural Techniques

- Regional Structural Analysis
 Regional Seismicity, Stress Field
 Geometry of Fracture systems
- Regional Geologic Mapping Rock LithologiesMapped Faults
- Rock Alteration
 Alteration mineralogy
 Alteration Assemblages
 Duration of Geothermal Systems

Geochemistry

Chemical characteristics of: waters, gases, rocks, and soils

Geothermometers
silica geothermometers
Na-K-Mg-Ca geothermometers
sulphate oxygen isotope

Tracers

Isotopes

STABLE ISOTOPES OF WATER

Isotope	Ratio (R)	% Natural abundance	Reference Standard	Common Precision of H_2O Analysis
² H Deuterium	² H/ ¹ H	0.015	VSMOW	$\delta D \pm 1.0 \text{ o/oo}$
18O	¹⁸ O/ ¹⁶ O	0.204	VSMOW	$\delta^{18}O \pm 0.1 \text{ o/oo}$

 δ D or δ^{18} O = 1000 * (Rsample – Rstd)/Rstd (permil or o/oo) So:

Seawater $\delta D = 0$ o/oo and $\delta 18O = 0$ o/oo

 δD or $\delta 18O < 0 =$ "lighter"

 δD or $\delta 18O < 0 = \text{"heavier"}$

H₂¹⁶O is about 10% lighter than H₂¹⁸O, and chemically more reactive

Chloride

~50 to ~20,000 Solutes: Major Anions

mg/kg

(to ~200,000 mg/kg in hypersaline brines)

Sources: traces of Na-K-Cl in volcanic rocks (seawater origins), connate seawater in sedimentary rocks, halite deposits

Sulfate

~10 to ~1500 mg/kg

(to ~100,000 mg/kg in acid volcanic steam condensates

Sources: oxidized sulfide minerals and H₂S, sulfate mineral deposits (gypsum, anhydrite)

Extremes of volcanic and steam heated are acidic (no HCO3)

Approximate range among non-volcanic

geothermal systems (higher SO₄ exist)

Bicarbonate

<1 to several 1000 mg/kg

(for most purposes, effectively the same as "alkalinity")

Sources:
reactions of
dissolved CO₂
from atmosphere
and/or in
geothermal/volca
nic steam, with
silicate minerals
in rocks, with
carbonate
minerals
(limestone)

Geophysical Techniques

Standard: MT, T-MT, TDEM, Gravity Legacy: Dipole-Dipole, tensor Dipole-Bipole

Special: VES, AMT, CSAMT, SP, HEM, Aeromagnetics, Precision Ground magnetics, Reflection/Refraction Seismics

Development: Microgravity, Microearthquakes, Subsidence

Sample Temperature Gradient Data

Discovery to Developed...

Shooting fish in a barrel?

Probability of Success for any Stage

Probability of Proving a Viable Project

